Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 122023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36815557

RESUMO

The health benefits of regular physical exercise are well known. Even so, there is increasing evidence that the exercise regimes of elite athletes can evoke cardiac arrhythmias including ventricular fibrillation and even sudden cardiac death (SCD). The mechanism of exercise-induced arrhythmia and SCD is poorly understood. Here, we show that chronic training in a canine model (12 sedentary and 12 trained dogs) that mimics the regime of elite athletes induces electrophysiological remodeling (measured by ECG, patch-clamp, and immunocytochemical techniques) resulting in increases of both the trigger and the substrate for ventricular arrhythmias. Thus, 4 months sustained training lengthened ventricular repolarization (QTc: 237.1±3.4 ms vs. 213.6±2.8 ms, n=12; APD90: 472.8±29.6 ms vs. 370.1±32.7 ms, n=29 vs. 25), decreased transient outward potassium current (6.4±0.5 pA/pF vs. 8.8±0.9 pA/pF at 50 mV, n=54 vs. 42), and increased the short-term variability of repolarization (29.5±3.8 ms vs. 17.5±4.0 ms, n=27 vs. 18). Left ventricular fibrosis and HCN4 protein expression were also enhanced. These changes were associated with enhanced ectopic activity (number of escape beats from 0/hr to 29.7±20.3/hr) in vivo and arrhythmia susceptibility (elicited ventricular fibrillation: 3 of 10 sedentary dogs vs. 6 of 10 trained dogs). Our findings provide in vivo, cellular electrophysiological and molecular biological evidence for the enhanced susceptibility to ventricular arrhythmia in an experimental large animal model of endurance training.


Assuntos
Arritmias Cardíacas , Fibrilação Ventricular , Cães , Animais , Morte Súbita Cardíaca , Ventrículos do Coração , Modelos Animais
2.
Br J Pharmacol ; 179(13): 3382-3402, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35106755

RESUMO

BACKGROUND AND PURPOSE: The aim of the present study was to study the antiarrhythmic effects and cellular mechanisms of desethylamiodarone (DEA), the main metabolite of amiodarone (AMIO), following acute and chronic 4-week oral treatments (25-50 mg·kg-1 ·day-1 ). EXPERIMENTAL APPROACH: The antiarrhythmic effects of acute iv. (10 mg·kg-1 ) and chronic oral (4 weeks, 25 mg·kg-1 ·day-1 ) administration of DEA were assessed in carbachol and tachypacing-induced dog atrial fibrillation models. Action potentials were recorded from atrial and right ventricular tissue following acute (10 µM) and chronic (p.o. 4 weeks, 50 mg·kg-1 ·day-1 ) DEA application using the conventional microelectrode technique. Ionic currents were measured by the whole cell configuration of the patch clamp technique in isolated left ventricular myocytes. Pharmacokinetic studies were performed following a single intravenous dose (25 mg·kg-1 ) of AMIO and DEA intravenously and orally. In chronic (91-day) toxicological investigations, DEA and AMIO were administered in the oral dose of 25 mg·kg-1 ·day-1 ). KEY RESULTS: DEA exerted marked antiarrhythmic effects in both canine atrial fibrillation models. Both acute and chronic DEA administration prolonged action potential duration in atrial and ventricular muscle without any changes detected in Purkinje fibres. DEA decreased the amplitude of several outward potassium currents such as IKr , IKs , IK1 , Ito , and IKACh , while the ICaL and late INa inward currents were also significantly depressed. Better drug bioavailability and higher volume of distribution for DEA were observed compared to AMIO. No neutropenia and less severe pulmonary fibrosis was found following DEA compared to that of AMIO administration. CONCLUSION AND IMPLICATIONS: Chronic DEA treatment in animal experiments has marked antiarrhythmic and electrophysiological effects with better pharmacokinetics and lower toxicity than its parent compound. These results suggest that the active metabolite, DEA, should be considered for clinical trials as a possible new, more favourable option for the treatment of cardiac arrhythmias including atrial fibrillation.


Assuntos
Amiodarona , Fibrilação Atrial , Potenciais de Ação , Amiodarona/análogos & derivados , Amiodarona/farmacologia , Animais , Antiarrítmicos/farmacologia , Fibrilação Atrial/tratamento farmacológico , Fibrilação Atrial/metabolismo , Cães , Átrios do Coração , Miócitos Cardíacos
3.
Cells ; 10(11)2021 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-34831426

RESUMO

Chronic heart failure is a clinical syndrome with multiple etiologies, associated with significant morbidity and mortality. Cardiac arrhythmias, including ventricular tachyarrhythmias and atrial fibrillation, are common in heart failure. A number of cardiac diseases including heart failure alter the expression and regulation of ion channels and transporters leading to arrhythmogenic electrical remodeling. Myocardial hypertrophy, fibrosis and scar formation are key elements of arrhythmogenic structural remodeling in heart failure. In this article, the mechanisms responsible for increased arrhythmia susceptibility as well as the underlying changes in ion channel, transporter expression and function as well as alterations in calcium handling in heart failure are discussed. Understanding the mechanisms of arrhythmogenic remodeling is key to improving arrhythmia management and the prevention of sudden cardiac death in patients with heart failure.


Assuntos
Arritmias Cardíacas/complicações , Arritmias Cardíacas/fisiopatologia , Insuficiência Cardíaca/complicações , Insuficiência Cardíaca/fisiopatologia , Remodelação Ventricular/fisiologia , Potenciais de Ação/fisiologia , Animais , Arritmias Cardíacas/diagnóstico por imagem , Sinalização do Cálcio , Insuficiência Cardíaca/diagnóstico por imagem , Humanos , Medição de Risco
4.
Can J Physiol Pharmacol ; 99(1): 89-101, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32970956

RESUMO

Cardiovascular diseases are the leading causes of mortality. Sudden cardiac death is most commonly caused by ventricular fibrillation (VF). Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia and a major cause of stroke and heart failure. Pharmacological management of VF and AF remains suboptimal due to limited efficacy of antiarrhythmic drugs and their ventricular proarrhythmic adverse effects. In this study, the antiarrhythmic and cardiac cellular electrophysiological effects of SZV-270, a novel compound, were investigated in rabbit and canine models. SZV-270 significantly reduced the incidence of VF in rabbits subjected to coronary artery occlusion/reperfusion and reduced the incidence of burst-induced AF in a tachypaced conscious canine model of AF. SZV-270 prolonged the frequency-corrected QT interval, lengthened action potential duration and effective refractory period in ventricular and atrial preparations, blocked I Kr in isolated cardiomyocytes (Class III effects), and reduced the maximum rate of depolarization (V max) at cycle lengths smaller than 1000 ms in ventricular preparations (Class I/B effect). Importantly, SZV-270 did not provoke Torsades de Pointes arrhythmia in an anesthetized rabbit proarrhythmia model characterized by impaired repolarization reserve. In conclusion, SZV-270 with its combined Class I/B and III effects can prevent reentry arrhythmias with reduced risk of provoking drug-induced Torsades de Pointes.


Assuntos
Antiarrítmicos/farmacologia , Fibrilação Atrial/tratamento farmacológico , Ventrículos do Coração/efeitos dos fármacos , Torsades de Pointes/diagnóstico , Fibrilação Ventricular/tratamento farmacológico , Potenciais de Ação/efeitos dos fármacos , Animais , Antiarrítmicos/uso terapêutico , Fibrilação Atrial/diagnóstico , Células Cultivadas , Modelos Animais de Doenças , Cães , Avaliação Pré-Clínica de Medicamentos , Eletrocardiografia/efeitos dos fármacos , Átrios do Coração/efeitos dos fármacos , Humanos , Masculino , Miócitos Cardíacos , Cultura Primária de Células , Coelhos , Torsades de Pointes/induzido quimicamente , Fibrilação Ventricular/diagnóstico
5.
Can J Physiol Pharmacol ; 99(1): 48-55, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32692935

RESUMO

Increased transmural dispersion of repolarization is an established contributing factor to ventricular tachyarrhythmias. In this study, we evaluated the effect of chronic amiodarone treatment and acute administration of dofetilide in canine cardiac preparations containing electrotonically coupled Purkinje fibers (PFs) and ventricular muscle (VM) and compared the effects to those in uncoupled PF and VM preparations using the conventional microelectrode technique. Dispersion between PFs and VM was inferred from the difference in the respective action potential durations (APDs). In coupled preparations, amiodarone decreased the difference in APDs between PFs and VM, thus decreasing dispersion. In the same preparations, dofetilide increased the dispersion by causing a more pronounced prolongation in PFs. This prolongation was even more emphasized in uncoupled PF preparations, while the effect in VM was the same. In uncoupled preparations, amiodarone elicited no change on the difference in APDs. In conclusion, amiodarone decreased the dispersion between PFs and VM, while dofetilide increased it. The measured difference in APD between cardiac regions may be the affected by electrotonic coupling; thus, studying PFs and VM separately may lead to an over- or underestimation of dispersion.


Assuntos
Amiodarona/farmacologia , Antiarrítmicos/farmacologia , Ventrículos do Coração/efeitos dos fármacos , Fenetilaminas/farmacologia , Ramos Subendocárdicos/efeitos dos fármacos , Sulfonamidas/farmacologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Amiodarona/uso terapêutico , Animais , Antiarrítmicos/uso terapêutico , Cães , Eletrocardiografia/instrumentação , Feminino , Ventrículos do Coração/inervação , Ventrículos do Coração/fisiopatologia , Humanos , Masculino , Microeletrodos , Modelos Animais , Fenetilaminas/uso terapêutico , Ramos Subendocárdicos/fisiologia , Sulfonamidas/uso terapêutico , Taquicardia Ventricular/tratamento farmacológico , Taquicardia Ventricular/fisiopatologia
6.
Cells ; 9(3)2020 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-32111102

RESUMO

Cardiac adverse effects are among the leading causes of the discontinuation of clinical trials and the withdrawal of drugs from the market. The novel concept of 'hidden cardiotoxicity' is defined as cardiotoxicity of a drug that manifests in the diseased (e.g. ischemic/reperfused), but not in the healthy heart or as a drug-induced deterioration of cardiac stress adaptation (e.g. ischemic conditioning). Here, we aimed to test if the cardiotoxicity of a selective COX-2 inhibitor rofecoxib that was revealed during its clinical use, i.e., increased occurrence of proarrhythmic and thrombotic events, could have been revealed in early phases of drug development by using preclinical models of ischemia/reperfusion (I/R) injury. Rats that were treated with rofecoxib or vehicle for four weeks were subjected to 30 min. coronary artery occlusion and 120 min. reperfusion with or without cardioprotection that is induced by ischemic preconditioning (IPC). Rofecoxib increased overall the arrhythmias including ventricular fibrillation (VF) during I/R. The proarrhythmic effect of rofecoxib during I/R was not observed in the IPC group. Rofecoxib prolonged the action potential duration (APD) in isolated papillary muscles, which was not seen in the simulated IPC group. Interestingly, while showing hidden cardiotoxicity manifested as a proarrhythmic effect during I/R, rofecoxib decreased the infarct size and increased the survival of adult rat cardiac myocytes that were subjected to simulated I/R injury. This is the first demonstration that rofecoxib increased acute mortality due to its proarrhythmic effect via increased APD during I/R. Rofecoxib did not interfere with the cardiprotective effect of IPC; moreover, IPC was able to protect against rofecoxib-induced hidden cardiotoxicity. These results show that cardiac safety testing with simple preclinical models of I/R injury uncovers hidden cardiotoxicity of rofecoxib and might reveal the hidden cardiotoxicity of other drugs.


Assuntos
Cardiotoxicidade/complicações , Lactonas/efeitos adversos , Traumatismo por Reperfusão/complicações , Sulfonas/efeitos adversos , Potenciais de Ação/efeitos dos fármacos , Animais , Arritmias Cardíacas/complicações , Cardiotônicos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Precondicionamento Isquêmico , Masculino , Infarto do Miocárdio/complicações , Infarto do Miocárdio/patologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Ratos Wistar
7.
Can J Physiol Pharmacol ; 96(1): 18-25, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28892643

RESUMO

Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia and a major cause of morbidity and mortality. Traditional antiarrhythmic agents used for restoration of sinus rhythm have limited efficacy in long-term AF and they may possess ventricular proarrhythmic adverse effects, especially in patients with structural heart disease. The acetylcholine receptor-activated potassium channel (IK,ACh) represents an atrial selective target for future AF management. We investigated the effects of the IK,ACh blocker tertiapin-Q (TQ), a derivative of the honeybee toxin tertiapin, on chronic atrial tachypacing-induced AF in conscious dogs, without the influence of anesthetics that modulate a number of cardiac ion channels. Action potentials (APs) were recorded from right atrial trabeculae isolated from dogs with AF. TQ significantly and dose-dependently reduced AF incidence and AF episode duration, prolonged atrial effective refractory period, and prolonged AP duration. The reference drugs propafenone and dofetilide, both used in the clinical management of AF, exerted similar effects against AF in vivo. Dofetilide prolonged atrial AP duration, whereas propafenone increased atrial conduction time. TQ and propafenone did not affect the QT interval, whereas dofetilide prolonged the QT interval. Our results show that inhibition of IK,ACh may represent a novel, atrial-specific target for the management of AF in chronic AF.


Assuntos
Potenciais de Ação , Fibrilação Atrial/tratamento farmacológico , Remodelamento Atrial , Estado de Consciência , Átrios do Coração/fisiopatologia , Bloqueadores dos Canais de Potássio/uso terapêutico , Canais de Potássio/metabolismo , Receptores Colinérgicos/metabolismo , Potenciais de Ação/efeitos dos fármacos , Animais , Fibrilação Atrial/fisiopatologia , Remodelamento Atrial/efeitos dos fármacos , Venenos de Abelha/administração & dosagem , Venenos de Abelha/farmacologia , Venenos de Abelha/uso terapêutico , Estado de Consciência/efeitos dos fármacos , Cães , Eletrocardiografia , Átrios do Coração/efeitos dos fármacos , Masculino , Fenetilaminas/administração & dosagem , Fenetilaminas/farmacologia , Fenetilaminas/uso terapêutico , Bloqueadores dos Canais de Potássio/administração & dosagem , Bloqueadores dos Canais de Potássio/farmacologia , Propafenona/administração & dosagem , Propafenona/farmacologia , Propafenona/uso terapêutico , Período Refratário Eletrofisiológico/efeitos dos fármacos , Sulfonamidas/administração & dosagem , Sulfonamidas/farmacologia , Sulfonamidas/uso terapêutico
8.
Can J Physiol Pharmacol ; 93(7): 535-44, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25928472

RESUMO

A reliable assessment of the pro-arrhythmic potential for drugs in the development phase remains elusive. Rabbits and dogs are commonly used to create models of pro-arrhythmia, but the differences between them with respect to repolarizing potassium currents are poorly understood. We investigated the incidence of drug-induced torsades de pointes (TdP) and measured conventional ECG parameters and the short-term variability of the QT interval (STVQT) following combined pharmacological inhibition of IK1+IKs and IK1+IKr in conscious dogs and anesthetized rabbits. A high incidence of TdP was observed following the combined inhibition of IK1+IKs in dogs (67% vs. 14% in rabbits). Rabbits exhibited higher TdP incidence after inhibition of IK1+IKr (72% vs. 14% in dogs). Increased TdP incidence was associated with significantly larger STVQT in both models. The relatively different roles of IK1 and IKs in dog and rabbit repolarization reserve should be taken into account when extrapolating the results from animal models of pro-arrhythmia to humans. A stronger repolarization reserve in dogs (likely due to stronger IK1 and IKs), and the more human-like susceptibility to arrhythmia of rabbits argues for the preferred use of rabbits in the evaluation of adverse pro-arrhythmic effects.


Assuntos
Modelos Animais de Doenças , Eletrocardiografia/efeitos dos fármacos , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio/metabolismo , Potássio/metabolismo , Torsades de Pointes/induzido quimicamente , Animais , Cães , Sinergismo Farmacológico , Feminino , Frequência Cardíaca/efeitos dos fármacos , Masculino , Canais de Potássio de Abertura Dependente da Tensão da Membrana/antagonistas & inibidores , Coelhos , Especificidade da Espécie , Torsades de Pointes/metabolismo , Torsades de Pointes/fisiopatologia
9.
Br J Pharmacol ; 171(1): 92-106, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24102184

RESUMO

BACKGROUND AND PURPOSE: Atrial fibrillation (AF) is the most common cardiac arrhythmia and is associated with an increased risk for stroke, heart failure and cardiovascular-related mortality. Candidate targets for anti-AF drugs include a potassium channel K(v)1.5, and the ionic currents I(KACh) and late I(Na), along with increased oxidative stress and activation of NFAT-mediated gene transcription. As pharmacological management of AF is currently suboptimal, we have designed and characterized a multifunctional small molecule, compound 1 (C1), to target these ion channels and pathways. EXPERIMENTAL APPROACH: We made whole-cell patch-clamp recordings of recombinant ion channels, human atrial I(Kur), rat atrial I(KACh), cellular recordings of contractility and calcium transient measurements in tsA201 cells, human atrial samples and rat myocytes. We also used a model of inducible AF in dogs. KEY RESULTS: C1 inhibited human peak and late K(v)1.5 currents, frequency-dependently, with IC50 of 0.36 and 0.11 µmol·L(-1) respectively. C1 inhibited I(KACh)(IC50 of 1.9 µmol·L(-1)) and the Na(v)1.5 sodium channel current (IC50s of 3 and 1 µmol·L(-1) for peak and late components respectively). C1 (1 µmol·L(-1)) significantly delayed contractile and calcium dysfunction in rat ventricular myocytes treated with 3 nmol·L(-1) sea anemone toxin (ATX-II). C1 weakly inhibited the hERG channel and maintained antioxidant and NFAT-inhibitory properties comparable to the parent molecule, resveratrol. In a model of inducible AF in conscious dogs, C1 (1 mg·kg(-1)) reduced the average and total AF duration. CONCLUSION AND IMPLICATIONS: C1 behaved as a promising multifunctional small molecule targeting a number of key pathways involved in AF.


Assuntos
Antiarrítmicos/farmacologia , Fibrilação Atrial/tratamento farmacológico , Miócitos Cardíacos/efeitos dos fármacos , Estilbenos/farmacologia , Potenciais de Ação , Adulto , Idoso , Animais , Animais Recém-Nascidos , Antioxidantes/farmacologia , Fibrilação Atrial/metabolismo , Fibrilação Atrial/fisiopatologia , Modelos Animais de Doenças , Cães , Relação Dose-Resposta a Droga , Canal de Potássio ERG1 , Canais de Potássio Éter-A-Go-Go/antagonistas & inibidores , Canais de Potássio Éter-A-Go-Go/genética , Canais de Potássio Éter-A-Go-Go/metabolismo , Acoplamento Excitação-Contração/efeitos dos fármacos , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/antagonistas & inibidores , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/genética , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/metabolismo , Células HEK293 , Humanos , Canal de Potássio Kv1.5/antagonistas & inibidores , Canal de Potássio Kv1.5/genética , Canal de Potássio Kv1.5/metabolismo , Masculino , Pessoa de Meia-Idade , Contração Miocárdica/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.5/efeitos dos fármacos , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Fatores de Transcrição NFATC/antagonistas & inibidores , Fatores de Transcrição NFATC/metabolismo , Bloqueadores dos Canais de Potássio/farmacologia , Ratos , Ratos Sprague-Dawley , Resveratrol , Bloqueadores dos Canais de Sódio/farmacologia , Transfecção
10.
PLoS One ; 7(12): e53255, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23300901

RESUMO

BACKGROUND: The aim of the present work was to characterize the electrophysiological effects of the non-steroidal anti-inflammatory drug diclofenac and to study the possible proarrhythmic potency of the drug in ventricular muscle. METHODS: Ion currents were recorded using voltage clamp technique in canine single ventricular cells and action potentials were obtained from canine ventricular preparations using microelectrodes. The proarrhythmic potency of the drug was investigated in an anaesthetized rabbit proarrhythmia model. RESULTS: Action potentials were slightly lengthened in ventricular muscle but were shortened in Purkinje fibers by diclofenac (20 µM). The maximum upstroke velocity was decreased in both preparations. Larger repolarization prolongation was observed when repolarization reserve was impaired by previous BaCl(2) application. Diclofenac (3 mg/kg) did not prolong while dofetilide (25 µg/kg) significantly lengthened the QT(c) interval in anaesthetized rabbits. The addition of diclofenac following reduction of repolarization reserve by dofetilide further prolonged QT(c). Diclofenac alone did not induce Torsades de Pointes ventricular tachycardia (TdP) while TdP incidence following dofetilide was 20%. However, the combination of diclofenac and dofetilide significantly increased TdP incidence (62%). In single ventricular cells diclofenac (30 µM) decreased the amplitude of rapid (I(Kr)) and slow (I(Ks)) delayed rectifier currents thereby attenuating repolarization reserve. L-type calcium current (I(Ca)) was slightly diminished, but the transient outward (I(to)) and inward rectifier (I(K1)) potassium currents were not influenced. CONCLUSIONS: Diclofenac at therapeutic concentrations and even at high dose does not prolong repolarization markedly and does not increase the risk of arrhythmia in normal heart. However, high dose diclofenac treatment may lengthen repolarization and enhance proarrhythmic risk in hearts with reduced repolarization reserve.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Inibidores de Ciclo-Oxigenase/farmacologia , Diclofenaco/farmacologia , Coração/efeitos dos fármacos , Função Ventricular/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Arritmias Cardíacas/fisiopatologia , Cães , Coração/fisiologia , Ramos Subendocárdicos/efeitos dos fármacos , Ramos Subendocárdicos/fisiologia , Coelhos
11.
Eur J Pharmacol ; 662(1-3): 31-9, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21550338

RESUMO

The aim of this study was to investigate the cellular electrophysiological effects of ranolazine on action potential characteristics. The experiments were carried out in dog and human cardiac preparations using the conventional microelectrode technique. In dog Purkinje fibres ranolazine produced a concentration- and frequency-dependent depression of the maximum rate of depolarization (V(max)) while action potential duration (APD) was shortened. In dog and human right ventricular papillary muscle ranolazine exerted no significant effect on APD, while it produced, like mexiletine, use-dependent depression of V(max) with relatively fast onset and offset kinetics. In dog midmyocardial preparations the drug did not exert statistically significant effect on repolarization at 10 µM, although a tendency toward prolongation was observed at 20 µM. A moderate lengthening of APD(90) by ranolazine was noticed in canine atrial preparations obtained from dogs in sinus rhythm and in tachypacing induced remodelled preparations. Use-dependent depression of V(max) was more pronounced in atria from dogs in sinus rhythm than those in remodelled atria or in the ventricle. These findings indicate that ranolazine, in addition to its known late sodium current blocking effect, also depresses peak I(Na) with class I/B antiarrhythmic characteristics. Although peak I(Na) inhibition by ranolazine is stronger in the atria, it is also substantial (at fast stimulation frequencies) in ventricular preparations. Ranolazine also decreased the dispersion of ventricular repolarization (the difference in APD(90) values between Purkinje fibres and papillary muscles), which can contribute to the antiarrhythmic property of the drug.


Assuntos
Acetanilidas/farmacologia , Angina Pectoris/tratamento farmacológico , Antiarrítmicos/farmacologia , Coração/efeitos dos fármacos , Piperazinas/farmacologia , Acetanilidas/uso terapêutico , Animais , Antiarrítmicos/uso terapêutico , Função Atrial/efeitos dos fármacos , Cães , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Feminino , Coração/fisiologia , Átrios do Coração/efeitos dos fármacos , Humanos , Técnicas In Vitro , Cinética , Masculino , Potenciais da Membrana/efeitos dos fármacos , Músculos Papilares/efeitos dos fármacos , Músculos Papilares/fisiologia , Piperazinas/uso terapêutico , Ramos Subendocárdicos/efeitos dos fármacos , Ramos Subendocárdicos/fisiologia , Ranolazina
12.
Am J Physiol Heart Circ Physiol ; 298(5): H1577-87, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20207815

RESUMO

Protracted QT interval (QTI) adaptation to abrupt heart rate (HR) changes has been identified as a clinical arrhythmic risk marker. This study investigates the ionic mechanisms of QTI rate adaptation and its relationship to arrhythmic risk. Computer simulations and experimental recordings in human and canine ventricular tissue were used to investigate the ionic basis of QTI and action potential duration (APD) to abrupt changes in HR with a protocol commonly used in clinical studies. The time for 90% QTI adaptation is 3.5 min in simulations, in agreement with experimental and clinical data in humans. APD adaptation follows similar dynamics, being faster in mid-myocardial cells (2.5 min) than in endocardial and epicardial cells (3.5 min). Both QTI and APD adapt in two phases following an abrupt HR change: a fast initial phase with time constant < 30 s, mainly related to L-type calcium and slow-delayed rectifier potassium current, and a second slow phase of >2 min driven by intracellular sodium concentration ([Na(+)](i)) dynamics. Alterations in [Na(+)](i) dynamics due to Na(+)/K(+) pump current inhibition result in protracted rate adaptation and are associated with increased proarrhythmic risk, as indicated by action potential triangulation and faster L-type calcium current recovery from inactivation, leading to the formation of early afterdepolarizations. In conclusion, this study suggests that protracted QTI adaptation could be an indicator of altered [Na(+)](i) dynamics following Na(+)/K(+) pump inhibition as it occurs in patients with ischemia or heart failure. An increased risk of cardiac arrhythmias in patients with protracted rate adaptation may be due to an increased risk of early after-depolarization formation.


Assuntos
Adaptação Fisiológica/fisiologia , Arritmias Cardíacas/fisiopatologia , Frequência Cardíaca/fisiologia , Potenciais de Ação/fisiologia , Animais , Canais de Cálcio Tipo L/fisiologia , Simulação por Computador , Canais de Potássio de Retificação Tardia/fisiologia , Cães , Eletrocardiografia , Ventrículos do Coração , Humanos , Canais Iônicos/fisiologia , Cinética , Contração Miocárdica/fisiologia , Miócitos Cardíacos/fisiologia , Valor Preditivo dos Testes , Medição de Risco , Sódio/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...